利用多重 PCR 进行鸡全基因组扫描*

黄银花^{1,3} 胡晓湘² 邓学梅² 徐慰倬¹ 李 宁^{1**} 冯继东¹ 孙 汉³ 吴常信²

1. 中国农业大学农业生物技术国家重点实验室,北京 100094;2. 中国农业大学动物科学技术学院,北京 100094; 3. 江西农业大学动物科技学院,南昌 330200

摘要 应用多重 PCR 结合半自动化荧光标记 DNA 分析技术从 328 个微卫星标记中筛选出分布于 23 条常染色体及 1 条性染色体(Z 染色体)、覆盖 3080 cM、包含在 30 个引物组合中的 170 个多态微卫星标记,平均标记密度为 18 cM,并优化了这些引物组合的反应条件. 筛选出的这些多态微卫星标记在本实验群体中符合 Mendel 遗传定律,可应用于鸡的连锁图谱分析及重要经济数量性状的定位研究.

关键词 鸡全基因组扫描 多重 PCR 微卫星标记 基因型

目前确定数量性状位点(QTL)主要有两种方法,一是候选基因法,即根据已有的生理生化知识,推断可能有哪些基因参与了性状的形成,然后利用表型差异大的品种或群体检测基因的变异.该方法虽然简便,但有效基因数有限,且不能发现一些新基因.另一方法是基因组扫描法,其基本原理是应用大量微卫星标记对整个基因组进行扫描,寻找与控制表型性状的基因密连锁的多态标记,通过统计推断、分析标记与 QTL 的连锁关系,最终将控制表型性状的基因定位在连锁图谱上.与候选基因法相比,基因组扫描要求应用大量的微卫星标记在具有完整性状记录的、群体数量大的资源家系进行全基因组扫描,此方法的缺点是工作量大,实验经费较高,但在整个基因组进行搜索过程中易于发现新基因,因而倍受研究者的青睐.近年来,很多研究小组应用这种方法定位了一些肉用性状、乳用性状和繁殖性状的 QTL[1].

全基因组扫描是一件工作烦琐的研究,因而,研究者们努力寻找一些能减少工作量、加速研究进展的方法. 1988 年 Chamberlian $[^2,^3]$ 等首次提出在同一反应体系中进行多个序列的扩增,即 M-PCR. M-PCR 的关键是 PCR 条件的优化,即不仅要求不同引物能在同一反应体系中进行特异性扩增,且能通过一定的电泳手段分辨出各对引物的扩增产物. 在人类基因组结构与功能基因的研究中,多重 PCR 技术得到了广泛的应用,利用多重 PCR 结合半自动化或全自动化荧光标记 DNA 分析技术,ABI 公司相继推出了包含 6 个、9 个、13 个、16 个位点的 Cofiler $^{\text{TM}}$, Profiler $^{\text{Plus}}$,SGM $^{\text{Plus}}$ 及 Identifiler $^{\text{TM}}$ 试剂盒,为亲子鉴定及人类疾病等性状的 QTL 定位奠定了基础. 在动物研究领域,多重 PCR 的应用还不多,如何借助于人类基因组中的研究

²⁰⁰¹⁻⁰²⁻¹³ 收稿,2001-03-28 收修改稿

^{*} 国家自然科学基金资助项目(批准号: 39400095)

^{**}联系人, E-mail: ninglbau@public3.bta.net.cn

成果加速家畜禽经济数量性状(QTL)的定位一直是动物遗传研究者努力的方向.在本研究中,借助于成功应用于人类基因组研究中的多重 PCR 技术进行了大量多重 PCR 反应条件的优化实验,获得了 30 个引物组合包含 170 个微卫星标记的最佳反应条件,同一个反应体系中能同时加入 38 对引物扩增特异片段,并应用到大规模鸡的基因组扫描中.实践证明多重 PCR的应用能减少 3/4 至 4/5 的工作量,大大降低了实验成本,为加速实验进展奠定了基础.

1 材料与方法

1.1 实验材料

DNA 样本:本实验 DNA 取自中国农业大学资源家系^[4]的肉鸡杂交系,杂交配套采用泰和 丝毛乌骨鸡和明星肉鸡杂交,从中选出正反交共 4 个家系,包含 40 只祖代(F_0)、22 只亲代(F_1)、376 只子代(F_2).

引物:5'端标记有 HEX, TET 或 6-FAM 亚磷酸酰胺的引物由美国密西根大学 Hans Cheng 博士提供.

1.2 实验方法

- 1.2.1 DNA 样品的提取 DNA 提取采用 Promaga 公司 Wizard® Genomic DNA Purification 试剂 盒说明书进行,将 DNA 浓度稀释至 10 ng/uL.
- 1.2.2 引物组合的设计 根据标记在引物 5'端荧光的差异、扩增片段的大小以及尽量避免引物间配对的原则,将 $3 \sim 8$ 对引物放在一个 M-PCR 中扩增. 为减少非特异性扩增片段的干扰,在 F_0 代中对所有个体分别进行了单个标记的扩增及 M-PCR 扩增,只有单个标记的扩增片段大小与 M-PCR 扩增片段大小一致的标记才被应用于 F_1 和 F_2 代的基因型连锁分析及 QTL 的定位研究. 根据 F_0 代的扩增结果,可获得某个标记在本群体中的精确扩增片段大小及基因型.
- 1.2.3 PCR 反应 PCR 反应总体积为 15 μ L,含有 DNA 模板 20 ng,1.5 mmol/L MgCl₂,50 mmol/L KCl, 10 mmol/L Triton X-100,0.01%明胶,200 mmol/L dNTP,5U TaqDNA 聚合酶,正反向引物各 0.2 pmol,其中正向或反向 5'端标有 HEX 或 TET 或 6-FAM 亚磷酸酰胺. PCR 反应条件为:94℃预变性 5 min,94℃变性 40 s,根据不同引物组合设置 2~3 个退火温度,退火 1 min,72℃延伸 1 min,每个退火温度设计 10~20 个循环,最后 72℃延伸 40 min.
- 1.2.4 凝胶电泳 PCR 产物凝胶电泳和图像分析采用 PE-ABI377 全自动序列测定仪, ABI GS-350 TAMRA 分子量内标,在 4.5%聚丙烯酰胺凝胶中(29:1,6 mol/L 尿素)电泳 2 h.

2 结果

2.1 多重 PCR 反应条件的优化

多重 PCR 反应要求同一反应体系中同时特异性地扩增多个微卫星位点,根据这一特点,本实验主要从退火温度、退火和延伸时间、循环次数、PCR 缓冲液、dNTP 的用量等方面对 M-PCR 反应条件进行了优化,经过反复的实验,从 328 个标记中优化了包含在 30 个引物组合的 170 个多态微卫星标记.

2.2 多态微卫星标记的选择

从 328 个标记中获得了 170 个可借助 M-PCR 技术分析其基因型的多态微卫星位点(见表 1).

表 1	番卷里	的多态微	卫星标记
αx ı	7111 225 123	ロコクノルトが	エエかル

引物组合				位点			
1	MCW61	MCW78	MCW68	MCW35	MCW18	MCW83	
2	MCW95	MCW123	MCW112	MCW97			
3	ADL268	MCW166	MCW160	MCW32	MCW151		
4	MCW81	MCW23	MCW5	ADL158	MCW98	MCW119	MCW64
	MCW176						
5	MCW178	MCW94	ADL38	MCW58	MCW193		
6	MCW31	MCW29	ADL299	ADL280	MCW104	MCW34	MCW134
7	ADL123	ADL304	MCW69	MCW145	MCW137	MCW198	
8	ADL146	ADL147	MCW115	MCW88	MCW200	MCW205	MCW116
9	MCW10	MCW135	ADL284	MCW222	MCW207	MCW100	MCW36
10	MCW180	ADL270	ADL289	MCW237	MCW184	MCW218	LEI66
11	MCW82	MCW37	MCW146	MCW185	MCW80	MCW224	
12	MCW62	ADL290	ADL142	LE185	MCW214		
13	MCW55	LE1146	MCW231	MCW230	OE197	LIE145	
14	MCW148	MCW211	MCW173	LE1144	MCW84	ADL136	LEI107
	MCW217						
15	MCW27	LEI73	MCW238	LE182	LIE141		
16	ADL279	MCW16	MCW240	LE180	LE191	ADL266	
17	ADL260	ADI.231	LEI70	MCW247	MCW257	MCW256	MCW245
18	ADL187	MCW66	ADL102	MCW255	MCW251	MCW252	
19	MCW210	LEI79	MCW194	MCW248	MCW165		
20	ADL331	LEI68	LE181	LIE44			
21	ADL179	ADL324	LIE88	ADL323	MCW264	LIE161	ADL293
22	ADL328	ADL345	ADI330	ADL322	LEI174	ADL341	
23	ADL336	ADL169	ADI.348	ADL257	ADL326		
24	LIE118	ADL250	MCW285	LE1108	LEI115	LE1106	MCW283
25	MCW295	LEI98	ADL154	LEI84	MCW296	ADL292	
26	MCW323	ADI.319	ADL201	ADL273	MCW313	MCW328	
27	ADL320	ADI.278	ADL309	ADL310	ADI.288	MCW316	ADL314
	MCW322	MCW314					
28	MCW305	MCW330	MCW300	MCW308	ADL312		
29	MCW128	MCW331	LEI121	MCW294			
30	MCW154	LEI75	MCW241				

采用这 170 个微卫星标记,在本实验群的 F_2 代 4 个家系的 376 个个体中进行了基因型分析,应用 GENESCANTM3.0 软件进行数据收集、泳道线校正、校正内在分子量标准和测量迁移片段大小,并用 GenotypeTM2.5 软件进行基因分型.

经初步检验,这170个位点在本实验群中均符合 Mendel 遗传定律,可用于连锁分析及QTL 定位研究. 据统计,上述优化筛选出的多态位点分布在23条常染色体及1条性染色体(Z染色体)上(http://www.zod.wau.nl/vf/base_ie.html),各染色体上的标记数及标记密度见表2.

— 染色体号	染色体长度/cM	标记数	标记密度/cM	染色体号	染色体长度/cM	标记数	标记密度/cM
1	544	26	20.92	13	52	4	13
2	418	23	18.17	14	74	4	18.5
3	322	14	23	15	51	5	10.2
4	248	14	17.71	16	60	3	20
5	170	12	14.67	17	77	2	38.5
6	104	5	20.8	19	46	3	15.33
7	175	5	35	20	49	3	16.33
8	77	4	19.25	22	29	1	29
9	79	6	13.17	23	54	2	27
10	85	4	21.56	24	19	3	6.33
11	105	11	9.55	26	25	2	12.5
12	57	_ 3	15.67	Z	170	10	17

表 2 各染色体上的标志

3 讨论

3.1 多重 PCR 反应条件的优化

与常规 PCR 反应相比,在对引物组合的 M-PCR 反应条件进行优化时,我们在以下方面对反应条件进行了调整:(1)根据引物组合中各对引物的 T_m 值选择多个退火温度,每个退火温度循环 $10\sim20$ 次,同时延长退火、延伸时间,以满足不同引物的扩增要求;(2)延长反应结束时延伸时间,反应结束时 72° 延伸至 40 min,从而减少了扩增产物加尾(polyA)即复制打滑不整齐的影响;(3)在 PCR 缓冲液中加入一些能增加特异性扩增的添加剂,如 Triton X-100,同时,适当增加反应体系中 dNTP 的量;(4)缩小了反应体系,常规 PCR 反应体积一般为 $25\sim50$ uL,本研究中反应体系缩小至 $15~\mu$ L,降低了实验成本,并为进行大批量的基因组扫描提供了便利. 虽然从以上 4 个方面进行多重 PCR 反应条件的优化,但仍有很多微卫星标记无法合并到现有的引物组合中,其原因主要有:(1)部分引物 5'-端上标记的荧光发生衰变,无法在序列分析仪上分辨出扩增产物,在未被并入现有引物组合的引物中约有 15% 发生了荧光衰变;(2)引物间的配对可能影响了部分引物的扩增;(3)现有的 M-PCR 反应体系如退火温度、 Mg^2+ 浓度等不适宜这些引物的扩增.

3.2 标记密度与 QTL 的定位

经过反复优化 M-PCR 反应条件后筛选出的 170 个多态微卫星标记在本实验群中符合 Mendel 遗传定律,可用于连锁分析及 QTL 的定位研究. 从表 2 可看出这些标记分布在 23 条常染色体和 1 条性染色体上,覆盖 3080 cM,平均标记密度为 18 cM,从整体上看标记密度较大,可满足定位 QTL 的要求,但不同染色体间标记密度差异较大,标记密度最大的可达 6.33 cM,标记密度小的只有 38.6 cM. 有研究表明,在孙女设计中不同的群体结构、性状遗传力、QTL 效应大小和 QTL 在染色体上的位置等各因素的影响下,不同标记密度对 QTL 定位的精确性的影响不同[5]. 因此,在以后的研究中有必要进一步加大标记密度,以提高定位 QTL 的精确性.

参考文献

- 1 黄银花,等.应用微卫星标记在家畜中定位数量性状位点.动物生物技术学报,2000,7(增刊):42
- 2 Chamberlian J S, et al. Detection screening of the Duchenne muscular dystrophy locus via mutiplex DNA amplification. Nucl Acids Res, 1988(16): 1141
- 3 Chamberlian J S, et al. Mutiplex PCR for the diagnosis of Duchenne muscular dystrophy. In: PCR Protocols: A Guide to Methods and Applications. Orlando: Academic Press, 1997. 272 ~ 281
- 4 邓学梅,等. 鸡重要经济性状基因定位资源群体的初步建立. 见:第 10 次全国动物遗传育种学术讨论会论文集. 北京:中国农业科学技术出版社,1999.430
- 5 徐宁迎,等. 德国奶牛奶用性状的 QTL 定位研究. 见:第 10 次全国动物遗传育种学术讨论会论文集,北京:中国农业科学技术出版社,1999.343